

Ministry of higher Education and Scientific Researches

Session 8 , Lecture 2

Duration : 1 hr

Metabolism

Adrenal Glands Disorders of the Adrenal Cortex

Module staff

Dr. Amani Naama. Dr. Zainab Almnaseer Dr. Hamid Jaddoa

Dr. Zainab Muzahim

Dr. Maida Abdulaa Adnan

Dr. Ahmed Jaffar Hendi Dr. Dhaighum Al-Mahfoodh Dr. Ammar Mohammed Saeed Dr. Sara Mohammed Ass. Lecturer Eatidal Akram

1.Harper's Illustrated Biochemistry, Thirtieth Edition Copyright © 2015 2. Lehninger Principles of Biochemistry Sixth Edition (6th Edition)

3. Marks Essentials of Medical Biochemistry.

Ministry of higher Education and Scientific Researches

Learning outcomes (LO)

- •List the hormones produced by the adrenal glands and their functions. LO1 •Describe the structure of the steroid hormones.LO2
- •Explain how the steroid hormones affect their target tissues.LO3
- •Explain how cortisol secretion is controlled by ACTH and CRH.LO4
- •Describe the structure and functions of adrenaline.LO5

Ministry of higher Education and Scientific Researches

Learning outcomes (LO):

- Explain how ACTH can lead to increased pigmentation in certain areas of the body.LO6
- Effects of over-and under-secretion of cortisol. LO7
- Tests of adrenal cortical function.LO8
- Explain how cortisol can have weak mineralocorticoid & androgen effects.
 LO9

Ministry of higher Education and Scientific Researches

Adrenal glands

- a **pair** of endocrine glands that cap the upper poles of the kidneys (suprarenal glands).
- ➤The gland consists of two regions:
- Outer cortex
- Inner medulla

Ministry of higher Education and Scientific Researches

	Layer	Hormones	Regulation of secretion	L01 Function
	Zona Glomerulosa	Mineralocorticoid Aldosterone (C21)	Renin- angiotensen system	 Reabsorption of Na+ & Water in exchange of K+/H+ at DCT Excess aldosterone cause hypertension, hypokalemia
Cortex	Zona Fasciculata	Glucocorticoid Cortisol (C21)	HPA-axis ACTH	 Affect metabolism of (CHO, protein ,fat) Immunosuppression ,anti-inflammatory
	Zona Reticularis	Androgens Dehydroepiandrosterone Androstenedione (C19)	HPA-axis ACTH	Sexual development
	Medulla	Catecholamine Epinephrine	Sympathetic preganglionic neuron	Stress response

Steroid Hormones Structure

 Steroid hormones are Lipophilic, synthesized from cholesterol (C27) via progesterone, in a series of enzyme catalyzed reactions.

Structural differences :

- 1. The number of carbon atoms.
- 2. Functional groups, the side chain on C17 is the main determinant of the hormone activity .
- 3. Distribution of C=C double bonds.

LO2

Ministry of higher Education and Scientific Researches

In part B of this figure, C = carbon atom

Ministry of higher Education and Scientific Researches

LO3

Transport in plasma

- Steroid hormones are lipophilic and must be transported bound to plasma proteins.
- 90 % bound to cortisol binding globulin (CBG; transcortin).
- 10% being free and biologically active.

Mechanism of action of steroids on target cells

Ministry of higher Education and Scientific Researches

Plasma cortisol concentrations are usually <u>highest</u> between about 07.00 - 09.00 a.m. and <u>lowest</u> between 23.00 pm - 04.00 am.

Loss of circadian rhythm is one of the earliest features of Cushing's syndrome

Control of cortisol secretion

Ministry of higher Education and Scientific Researches

Adrenal Medulla

The adrenal medulla is a modified **sympathetic ganglion** that synthesizes **catecholamines** : adrenaline (epinephrine) , noradrenaline (norepinephrine) and dopamine.

Catecholamine synthesis

- The catecholamines are synthesized from amino acid Tyrosine by a series of enzymecatalyzed steps
- > The catecholamines are stored in the medullary cells in membrane-limited vesicles.

Actions of adrenaline

• Adrenaline is released as part of the fright, flight or fight response and it is secreted in response to **stressful situations**.

Cardiovascular system

Increase cardiac output, blood supply to muscle

Central nervous system

(mental alertness)

Carbohydrate metabolism

Increase glycogenolysis in liver and muscle

Adipose tissu

lipid metabolism

increase lipolysis in adipose tissue

ACTH associated hyperpigmentation

>ACTH is a single-chain polypeptide made up of 39 amino acids

- The initial biosynthetic precursor is a large protein (~250 amino acids) called proopiomelanocortin (POMC).
- The MSH (melanocyte stimulating hormone) sequence of 13 amino acids is contained within the ACTH sequence in POMC giving ACTH some MSH-like activity when present in excess.

Ministry of higher Education and Scientific Researches

>increased pigmentation due to partial MSH activity.

16

LO6

Disorders of Adrenal Cortex

Disease can result from overproduction, as well as deficiency, of adrenocortical hormones.

> Moreover, excess or deficiency of these hormones can be :

Primary (resulting from adrenal gland dysfunction) or

Secondary (resulting from dysfunction of pituitary gland)

Ministry of higher Education and Scientific Researches

<u>Cushing 's syndrome</u>: Increased glucocorticoids due to:

1. Adrenal cortex tumor (**†** cortisol , **↓** ACTH)

2. Increased the secretion of ACTH caused by pituitary tumor (Cushing 's disease) (cortisol, ACTH)

3. latrogenic : drug induced ex: steroid abuse (most common cause)

Ministry of higher Education and Scientific Researches

Effects of over-secretion of cortisol – clinical features of Cushing 's syndrome:

- 1. Increased lipogenesis in the trunk, face and neck leading to characteristic body shape & moon-shaped face.
- 2. Cortisol has the opposite action to that of insulin, causing **increased** gluconeogenesis and hyperglycemia.
- 3. Increased protein catabolism causing proximal muscle wasting with weakness, thinning of the skin and bone osteoporosis.

striae

buffalo hump

moon-shaped face

L07

- Skin thinning increase the tendency to bruising and purple striae (most obvious on the abdominal wall).
- 4. Increased susceptibility to infections

5.Hypertension due to sodium and fluid retention (Mineralocorticoid activity)

Ministry of higher Education and Scientific Researches

Decreased activity of the adrenal cortex may be due to:

Addison 's disease: diseases of the adrenal cortex (auto-immune destruction, infection), all cortical zones will be involved reduces glucocorticoids and mineralocorticoids.(cortisol, aldosterone, ACTH)

2. Disorders in pituitary that lead to decreased secretion of ACTH <u>only affects</u> <u>glucocorticoids.</u> (cortisol, normal aldosterone, ACTH)

Ministry of higher Education and Scientific Researches

Effects of under-secretion – clinical features of Addison's disease

- 1. Tiredness, muscular weakness, occasional dizziness.
- 2. Decreased blood pressure and postural hypotension.
- 3. Hypoglycemic episodes especially on fasting
- 4. A more specific sign is the **increased pigmentation**, particularly on the exposed areas of the body, points of friction, buccal mucosa, scars and palmar creases due **to ACTH-mediated melanocyte stimulation**.

Ministry of higher Education and Scientific Researches

• These effects may be exacerbated by stress such as trauma or severe infection lead to extreme dehydration, hypotension, confusion, fever and even coma (Addisonian crisis), this a clinical emergency that must be treated with intra-venous cortisol and fluid replacement to avoid death.

Cushing 's syndrome

Ministry of higher Education and Scientific Researches

Clinical tests of adrenocortical function

- **1.** Early morning plasma cortisol.
- 2. ACTH.
- 3. 24 hour urinary cortisol.
- 4. Dynamic tests: dexamethasone suppression tests and ACTH stimulation test

- Dexamethasone is a potent synthetic steroid that, when given orally would normally suppress (by feedback inhibition) the secretion of ACTH and thus cortisol.
- Dexamethasone suppression of plasma cortisol by >50% is characteristic of Cushing s disease because for the diseased pituitary, even though it is relatively insensitive to cortisol, it does retain some sensitivity to potent synthetic steroids.
- Suppression does not occur in adrenal tumors.

Ministry of higher Education and Scientific Researches

Steroid hormone receptor homology

The steroid receptors have three main regions:

Hydrophobic hormone-binding region.
 DNA-binding region.

3.Variable region.

Ministry of higher Education and Scientific Researches

LO9

> There is homology in the hormone binding regions of the receptors with the mineralocorticoid, androgen receptors.

➢Cortisol will bind to the mineralocorticoid and androgen receptors with low affinity but the binding may become significant when high levels of the hormone are present